n^2+n+4=132

Simple and best practice solution for n^2+n+4=132 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2+n+4=132 equation:



n^2+n+4=132
We move all terms to the left:
n^2+n+4-(132)=0
We add all the numbers together, and all the variables
n^2+n-128=0
a = 1; b = 1; c = -128;
Δ = b2-4ac
Δ = 12-4·1·(-128)
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{57}}{2*1}=\frac{-1-3\sqrt{57}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{57}}{2*1}=\frac{-1+3\sqrt{57}}{2} $

See similar equations:

| -15x^2+360x-1800=0 | | -5+5v=15 | | 4x+10=-5-8x | | 9m-30=3 | | 126=12x+-6 | | -12=y/4-8 | | x/9-17=15 | | -6a+4a=8 | | 2x+4/6=6 | | 1+5p=16 | | x/6+43=38 | | 3x-5(x-4)=-9+5x+8 | | 5x/3+4=34 | | 5x/3+4=3 | | 8x–44=-11+5x | | x/2+9=3 | | 10=2d-4 | | c-4/4=4 | | 11c-3=8+4(c+11) | | 7x-(-2x-3)=21 | | -10-(3x-2)=16 | | 4=5x-112 | | -3/4x+2=6 | | 2n-9=3(n-2) | | 8.6x-13.8=55 | | 9u+6=10 | | |3x+6|=9 | | 29+4.50r=42.50 | | 4(v+5)-7v=8 | | x/​3+14=29 | | 5t-6=10 | | 6p-7=15+3p |

Equations solver categories